Part Number Hot Search : 
3013T MD1332F RF740 74ACT1 05010 APT30DQ DS1094LU N4001
Product Description
Full Text Search
 

To Download ADG406BP Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 a
FEATURES 44 V Supply Maximum Ratings VSS to VDD Analog Signal Range Low On Resistance (80 max) Low Power Fast Switching tON < 160 ns t OFF < 150 ns Break Before Make Switching Action Plug-In Upgrade for DG506A/ADG506A, DG507A/ADG507A, DG526/ADG526A ADG406/ADG407 are Plug-In Replacements for DG406/DG407 APPLICATIONS Audio and Video Routing Automatic Test Equipment Data Acquisition Systems Battery Powered Systems Sample Hold Systems Communication Systems Avionics GENERAL DESCRIPTION
LC2MOS 8-/16-Channel High Performance Analog Multiplexers ADG406/ADG407/ADG426
FUNCTIONAL BLOCK DIAGRAMS
ADG406
S1 S1A DA S8A D S1B S16 1 OF 16 DECODER A0 A1 A2 A3 EN DB S8B 1 OF 8 DECODER A0 A1 A2 EN
ADG407
ADG426
S1
D S16 WR DECODER/ LATCHES A0 A1 A2 A3 EN RS
PRODUCT HIGHLIGHTS
The ADG406, ADG407 and ADG426 are monolithic CMOS analog multiplexers. The ADG406 and ADG426 switch one of sixteen inputs to a common output as determined by the 4-bit binary address lines A0, A1, A2 and A3. The ADG426 has onchip address and control latches that facilitate microprocessor interfacing. The ADG407 switches one of eight differential inputs to a common differential output as determined by the 3bit binary address lines A0, A1 and A2. An EN input on all devices is used to enable or disable the device. When disabled, all channels are switched OFF. The ADG406/ADG407/ADG426 are designed on an enhanced LC2MOS process that provides low power dissipation yet gives high switching speed and low on resistance. These features make the parts suitable for high speed data acquisition systems and audio signal switching. Low power dissipation makes the parts suitable for battery powered systems. Each channel conducts equally well in both directions when ON and has an input signal range which extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. All channels exhibit break before make switching action preventing momentary shorting when switching channels. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.
1. Extended Signal Range The ADG406/ADG407/ADG426 are fabricated on an enhanced LC2MOS process giving an increased signal range which extends to the supply rails 2. Low Power Dissipation 3. Low RON 4. Single/Dual Supply Operation 5. Single Supply Operation For applications where the analog signal is unipolar, the ADG406/ADG407/ADG426 can be operated from a single rail power supply. The parts are fully specified with a single +12 V power supply and will remain functional with single supplies as low as +5 V.
REV. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood. MA 02062-9106, U.S.A. Tel: 617/329-4700 Fax: 617/326-8703
ADG406/ADG407/ADG426-SPECIFICATIONS1
DUAL SUPPLY
Parameter ANALOG SWITCH Analog Signal Range RON RON Match LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Drain OFF Leakage ID (OFF) ADG406, ADG426 ADG407 Channel ON Leakage ID, IS (ON) ADG406, ADG426 ADG407 DIGITAL INPUTS Input High Voltage, VINH Input Low Voltage, VINL Input Current IINL or IINH CIN, Digital Input Capacitance DYNAMIC CHARACTERISTICS2 tTRANSITION
(VDD = +15 V 10%, VSS = -15 V 10%, GND = 0 V, unless otherwise noted)
B Version -40C to +25C +85C VSS to VDD 50 80 4 0.5 1 1 1 1 125 50 80 4 0.5 1 1 1 1 T Version -55C to +25C +125C VSS to VDD 125
Units V typ max typ nA max nA max nA max nA max nA max V min V max A max pF typ ns typ ns max ns min ns typ ns max ns typ ns max ns min ns min ns min ns min pC typ dB typ dB typ pF typ pF typ pF typ
Test Conditions/Comments
VD = 10 V, IS = -1 mA VDD = +13.5 V, VSS = -13.5 V VD = 0 V, IS = -1 mA VDD = +16.5 V, VSS = -16.5 V VD = 10 V, VS = 10 V, Test Circuit 2 VD = 10 V, VS = 10 V; Test Circuit 3 VS = VD = 10 V; Test Circuit 4
20 20 20 20 20 2.4 0.8 1
50 200 100 200 100 2.4 0.8 1
8 120 150 10 120 160 110 150
8 120 150 10 120 160 110 150
VIN = 0 or VDD f = 1 MHz RL = 300 , CL = 35 pF; V1 = 10 V, V2 = 10 V; Test Circuit 5 RL = 300 , CL = 35 pF; VS = +5 V, Test Circuit 6 RL = 300 , CL = 35 pF; VS = +5 V, Test Circuit 7 RL = 300 , CL = 35 pF; VS = +5 V, Test Circuit 7
250 10 175 225 130 180 100 100 10 100
250 10 175 225 130 180 100 100 10 100
Break Before Make Delay, tOPEN tON (EN, WR) tOFF (EN, RS) ADG426 Only tW, Write Pulse Width tS, Address, Enable Setup Time tH, Address, Enable Hold Time tRS, Reset Pulse Width Charge Injection OFF Isolation Channel-to-Channel Crosstalk CS (OFF) CD (OFF) ADG406, ADG426 ADG407 CD, CS (ON) ADG406, ADG426 ADG407 POWER REQUIREMENTS IDD ISS IDD ISS NOTES
1 2
8 -75 85 5 50 25 60 40 1 5 1 5 100 200 500 1 5
8 -75 85 5 50 25 60 40 1 5 1 5 100 200 500 1 5
VS = +5 V VS = 0 V, RS = 0 , CL = 1 nF; Test Circuit 10 RL = 1 k, f = 100 kHz; VEN = 0 V, Test Circuit 11 RL = 1 k, f = 100 kHz, Test Circuit 12 f = 1 MHz f = 1 MHz
f = 1 MHz pF typ pF typ A typ A max A typ A max A typ A max A typ A max VDD = +16.5 V, VSS = -16.5 V VIN = 0 V, VEN = 0 V
VIN = 0 V, VEN = 2.4 V
Temperature ranges are as follows: B Versions: -40C to +85C; T Versions: -55C to +125C. Guaranteed by design, not subject to production test. Specifications subject to change without notice.
-2-
REV. 0
ADG406/ADG407/ADG426 SINGLE SUPPLY (V
Parameter ANALOG SWITCH Analog Signal Range RON LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Drain OFF Leakage ID (OFF) ADG406, ADG426 ADG407 Channel ON Leakage ID, IS (ON) ADG406, ADG426 ADG407 DIGITAL INPUTS Input High Voltage, VINH Input Low Voltage, VINL Input Current IINL or IINH CIN, Digital Input Capacitance DYNAMIC CHARACTERISTICS2 tTRANSITION
DD
= +12 V 10%, VSS = 0 V, GND = 0 V, unless otherwise noted)
B Version -40C to +25C +85C 0 to VDD 90 125 0.5 1 1 1 1 200 20 20 20 20 20 2.4 0.8 1 8 180 220 10 180 240 135 180 8 180 220 10 180 240 135 180 90 125 0.5 1 1 1 1 T Version -55C to +25C +125C 0 to VDD 200 50 200 100 200 100 2.4 0.8 1
Units V typ max nA max
Test Conditions/Comments
VD = +3 V, +8.5 V, IS = -1 mA; VDD = +10.8 V VDD = +13.2 V VD = 8 V/0.1 V, VS = 0.1 V/8 V; Test Circuit 2 VD = 8 V/0.1 V, VS = 0.1 V/8 V; Test Circuit 3 VS = VD = 8 V/0.1 V, Test Circuit 4
nA max nA max nA max nA max V min V max A max pF typ ns typ ns max ns typ ns typ ns max ns typ ns max ns min ns min ns min ns min pC typ dB typ dB typ pF typ pF typ pF typ
VIN = 0 or VDD f = 1 MHz RL = 300 , CL = 35 pF; V1 = 8 V/0 V, V2 = 0 V/8 V; Test Circuit 5 RL = 300 , CL = 35 pF; VS = +5 V, Test Circuit 6 RL = 300 , CL = 35 pF; VS = +5 V, Test Circuit 7 RL = 300 , CL = 35 pF; VS = +5 V, Test Circuit 7
350
350
Break Before Make Delay, tOPEN tON (EN, WR) tOFF (EN, RS) ADG426 Only tW, Write Pulse Width tS, Address, Enable Setup Time tH, Address, Enable Hold Time tRS, Reset Pulse Width Charge Injection OFF Isolation Channel-to-Channel Crosstalk CS (OFF) CD (OFF) ADG406, ADG426 ADG407 CD, CS (ON) ADG406, ADG426 ADG407 POWER REQUIREMENTS IDD IDD
350 220 100 100 10 100
350 220 100 100 10 100
5 -75 85 8 80 40 100 50 1 5 100 200 500
5 -75 85 8 80 40 100 50 1 5 100 200 500
VS = +5 V VS = 6 V, RS = 0 , CL = 1 nF; Test Circuit 10 RL = 1 k, f = 100 kHz; Test Circuit 11 RL = 1 k, f = 100 kHz; Test Circuit 12 f = 1 MHz f = 1 MHz
f = 1 MHz pF typ pF typ A typ A max A typ A max VDD = +13.2 V VIN = 0 V, VEN = 0 V VIN = 0 V, VEN = 2.4 V
NOTES 1 Temperature ranges are as follows: B Versions: -40C to +85C; T Versions: -55C to +125C. 2 Guaranteed by design, not subject to production test. Specifications subject to change without notice.
REV. 0
-3-
ADG406/ADG407/ADG426
ABSOLUTE MAXIMUM RATINGS 1
(TA = +25C unless otherwise noted)
ORDERING GUIDE
VDD to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .+44 V VDD to GND . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to +25 V VSS to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V to -25 V Analog, Digital Inputs2. . . . . . . . . . . . . VSS - 2 V to VDD + 2 V or 20 mA, Whichever Occurs First Continuous Current, S or D . . . . . . . . . . . . . . . . . . . . . 20 mA Peak Current, S or D . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 mA (Pulsed at 1 ms, 10% Duty Cycle Max) Operating Temperature Range Industrial (B Version) . . . . . . . . . . . . . . . . . -40C to +85C Extended (T Version) . . . . . . . . . . . . . . . . . -55C to +125C Storage Temperature Range . . . . . . . . . . . . . -65C to +150C Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . +150C Plastic Package JA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . 75C/W Lead Temperature, Soldering (10 sec) . . . . . . . . . . . +260C PLCC Package JA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . 80C/W Lead Temperature, Soldering Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215C Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220C SSOP Package JA, Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 122C/W Lead Temperature, Soldering Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . +215C Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . +220C
NOTES 1 Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time. 2 Overvoltages at A, S, D, WR or RS will be clamped by internal diodes. Current should be limited to the maximum ratings given.
Model ADG406BN ADG406BP ADG407BN ADG407BP ADG426BN ADG426BRS
Temperature Range -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C -40C to +85C
Package Option* N-28 P-28A N-28 P-28A N-28 RS-28
*N = Plastic DIP, P = Plastic Leaded Chip Carrier (PLCC), RS = Shrink Small Outline Package (SSOP).
CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although these devices feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
WARNING!
ESD SENSITIVE DEVICE
-4-
REV. 0
ADG406/ADG407/ADG426
Table I. Truth Table (ADG406) PIN CONFIGURATIONS DIP
VDD NC NC S16 S15 S14 S13 S12 S11 1 2 3 4 5 6 7 8 9 28 27 D VSS
A3 X 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
A2 X 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
A1 X 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
A0 X 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
EN 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ON SWITCH NONE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
PLCC
S16
VDD
VSS
NC
NC
26 S8 25 24 23 S7 S6 S5 S4 S3 S2 S1 EN
4 S15 S14 S13 S12 S11 5 6 7 8 9
3
2
1
28 27 26 25 S7 24 S6
S8 23 S5 22 S4 21 S3 20 S2 19 S1
S8A
ADG406
ADG406
TOP VIEW (Not to Scale)
22
TOP VIEW (Not to Scale) 21 20 19 18 17 16 15
S10 10 S9 11 12 13 14 15 16 17 18 NC GND
S10 10 S9 11 GND 12 NC 13 A3 14
A1 A2
NC = NO CONNECT
Table II. Truth Table (ADG407)
VDD
A2 X 0 0 0 0 1 1 1 1
A1 X 0 0 1 1 0 0 1 1
A0 X 0 1 0 1 0 1 0 1
EN 0 1 1 1 1 1 1 1 1
ON SWITCH PAIR NONE 1 2 3 4 5 6 7 8
DB NC S8B S7B S6B S5B S4B S3B
2 3 4 5 6 7 8 9
27 VSS 26 S8A 25 S7A 24 S6A 23 S5A 22 S4A TOP VIEW 21 S3A (Not to Scale) 20 S2A 19 18 17 16 15 S1A EN A0 A1 A2
4 S7B S6B S5B S4B S3B 5 6 7 8 9
3
2
1
28 27 26 25 S7A 24 S6A
VSS
NC
DB
DA
VDD
1
28 DA
S8B
EN
A3
A2
A1
A0
A0
D
ADG407
TOP VIEW (Not to Scale)
23 S5A 22 S4A 21 S3A 20 S2A 19 S1A
ADG407
S2B 10 S1B 11 12 13 14 15 16 17 18
GND NC NC EN A2 A1 A0
S2B 10 S1B 11 GND 12 NC 13
Table III. Truth Table (ADG426)
A3 X X
A2 X X
A1 X X
A0 X X
EN X X
WR RS 1 X 0
ON SWITCH Retains Previous Switch Condition NONE (Address and Enable Latches Cleared) NONE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
NC = NO CONNECT
NC 14
PIN CONFIGURATION DIP/SSOP
X 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
X 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
X 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
X 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
VDD NC RS S16 S15 S14 S13 S12 S11
1 2 3 4 5 6 7 8 9
28 27
D VSS
26 S8 25 24 23 S7 S6 S5 S4 S3 S2 S1 EN A0 A1 A2
ADG426
22
TOP VIEW (Not to Scale) 21 20 19 18 17 16 15
S10 10 S9 11 GND 12 WR 13 A3 14
NC = NO CONNECT
REV. 0
-5-
ADG406/ADG407/ADG426
TIMING DIAGRAMS (ADG426)
3V WR 0V 50% 50%
TERMINOLOGY
VDD VSS
tW tS tH
0.8V
3V A0, A1, A2, (A3) EN 0V
2V
GND RON RON Match IS (OFF) ID (OFF) ID, IS (ON) VD (VS) CS (OFF) CD (OFF)
Figure 1.
Figure 1 shows the timing sequence for latching the switch address and enable inputs. The latches are level sensitive; therefore, while WR is held low, the latches are transparent and the switches respond to the address and enable inputs. This input data is latched on the rising edge of WR.
3V RS 0V 50% 50%
t RS t OFF (RS)
V0 SWITCH OUTPUT 0V 0.8V0
CD, CS (ON) CIN tON (EN)
tOFF (EN)
Figure 2.
Figure 2 shows the Reset Pulse Width, tRS, and the Reset Turn Off Time, tOFF (RS). Note: All digital input signals rise and fall times are measured from 10% to 90% of 3 V. tR = tF = 20 ns.
tTRANSITION
tOPEN
VINL VINH IINL (IINH) Crosstalk
Off Isolation Charge Injection IDD ISS
Most positive power supply potential. Most negative power supply potential in dual supplies. In single supply applications, it may be connected to ground. Ground (0 V) reference. Ohmic resistance between D and S. Difference between the RON of any two channels. Source leakage current when the switch is off. Drain leakage current when the switch is off. Channel leakage current when the switch is on. Analog voltage on terminals D, S. Channel input capacitance for "OFF" condition. Channel output capacitance for "OFF" condition. "ON" switch capacitance. Digital input capacitance. Delay time between the 50% and 90% points of the digital input and switch "ON" condition. Delay time between the 50% and 90% points of the digital input and switch "OFF" condition. Delay time between the 50% and 90% points of the digital inputs and the switch "ON" condition when switching from one address state to another. "OFF" time measured between 80% points of both switches when switching from one address state to another. Maximum input voltage for logic "0." Minimum input voltage for logic "1." Input current of the digital input. A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance. A measure of unwanted signal coupling through an "OFF" channel. A measure of the glitch impulse transferred from the digital input to the analog output during switching. Positive supply current. Negative supply current.
-6-
REV. 0
ADG406/ADG407/ADG426 Typical Performance Graphs
150 TA = +25C
400 TA = +25C 350 VDD = +5V VSS = 0V
120 VDD = +5V VSS = -5V 90
300 250
RON -
RON -
VDD = +10V VSS = -10V
200 150 100 50 0 0 2.5 5 V DD = +15V V SS = 0V
60
VDD = +10V VSS = 0V VDD = +12V VSS = 0V
30
VDD = +15V VSS = -15V
VDD = +12V VSS = -12V
0 -15
-10
-5
0 VD (V S) - Volts
5
10
15
7.5 10 VD (V S) - Volts
12.5
15
Figure 3. RON as a Function of VD (VS): Dual Supplies
100 VDD = +15V VSS = -15V 80 +125C 60
Figure 6. RON as a Function of VD (VS): Single Supplies
150 VDD = +12V VSS = 0V 120 +125C 90 +85C +25C 60
RON -
+85C 40 +25C
20
RON -
0 5 VD (V S) - Volts 10 15
30
0 -15
0 -10 -5 0 2 4 6 8 VD (V S) - Volts 10 12
Figure 4. RON as a Function of VD (VS) for Different Temperatures
Figure 7. RON as a Function of VD (VS) for Different Temperatures
0.10 VDD = +15V VSS = -15V TA = +25C LEAKAGE CURRENT - nA ID(ON) 0.06
0.02 V DD = +12V V SS = 0V TA = +25C 0.01
0.08
LEAKAGE CURRENT - nA
0.04 ID(OFF) 0.02
IS(OFF) 0.00 ID(OFF) ID(ON) -0.01
0.00
IS(OFF)
-0.02 -15
-0.02
-10 -5 0 5 VD (V S) - Volts 10 15
0
2
4
6 VD (V S) - Volts
8
10
12
Figure 5. Leakage Currents as a Function of VD (VS)
Figure 8. Leakage Currents as a Function of VD (VS)
REV. 0
-7-
ADG406/ADG407/ADG426
100 VDD = +15V VSS = -15V 10 100 VDD = +15V VSS = -15V
10 IDD - mA
ISS - mA
1 EN = 2.4V 0.1 EN = 0V 0.01
EN = 2.4V 1
EN = 0V 0.1 2 10
0.001
10
3
10
4
10
5
10
6
10
7
0.0001 2 10
10
3
10
4
10
5
10
6
10
7
FREQUENCY - Hz
FREQUENCY - Hz
Figure 9. Positive Supply Current vs. Switching Frequency
Figure 12. Negative Supply Current vs. Switching Frequency
160
tON
140
VDD = +15V VSS = -15V
220 VDD = +12V VSS = 0V
200
tON tTRANSITION
t - ns
180
tTRANSITION
120
t - ns
160 140 120
100
80
tOFF
60 1 3 5 7 VIN - V 9 11 13 15
tOFF
100
80 2 4 6 VIN - V 8 10 12
Figure 10. Switching Time vs. VIN (Bipolar Supply)
Figure 13. Switching Time vs. VIN (Single Supply)
300 VIN = +5V
500 VIN = +5V 400
tTRANSITION tON
200
300
t - ns
tON tTRANSITION tOFF
t - ns
200
100
tOFF
100
0
5
7
9
11
13
15
17
19
21
0 5 7 9 11 SUPPLY VOLTAGE - Volts 13 15
SUPPLY VOLTAGE - Volts
Figure 11. Switching Time vs. Bipolar Supply
Figure 14. Switching Time vs. Single Supply
-8-
REV. 0
ADG406/ADG407/ADG426
140 VDD = +15V 120 VSS = -15V
140 VDD = +15V 120 VSS = -15V
OFF ISOLATION - dB
100
CROSSTALK - dB
3
100
80
80
60
60
40 2 10
10
10
4
10
5
10
6
10
7
40 10 2
10 3
10 4
10 5
10 6
10 7
FREQUENCY - Hz
FREQUENCY - Hz
Figure 15. OFF Isolation vs. Frequency
Figure 16. Crosstalk vs. Frequency
Test Circuits
IDS
VDD VSS
V1
VDD S1 S2 D VSS ID (OFF) A VD EN VS +0.8V
S
D
S16
VS
RON = V1/IDS
Test Circuit 1. On Resistance
Test Circuit 3. ID (OFF)
VDD
VSS
VDD
VSS
IS (OFF) A
S1 S2
VDD
VSS D
VDD S1
VSS ID (ON) D A VD EN 2.4V
S16 VS VD EN +0.8V
S16 VS
Test Circuit 2. IS (OFF)
Test Circuit 4. ID (ON)
REV. 0
-9-
ADG406/ADG407/ADG426
VDD VDD A3 VIN 50 A2 A1 A0 2.4V EN RS GND WR VSS VSS S1 S2 THRU S15 S16 V2 VOUT RL 300 CL 35pF VOUT 90% V1 3V ADDRESS DRIVE - V IN 50% 50%
ADG426*
D 90%
tTRANSITION
*SIMILAR CONNECTION FOR ADG406/ADG407
tTRANSITION
Test Circuit 5. Switching Time of Multiplexer, tTRANSITION
VDD
VSS
VDD A3 VIN 50
VSS S1 VS
3V ADDRESS DRIVE - V IN
A2 S2 THRU S15 A1 A0 RS 2.4V EN GND WR D RL 300 VOUT CL 35pF
ADG426*
S16
OUTPUT 0V
80%
80%
tOPEN
*SIMILAR CONNECTION FOR ADG406/ADG407
Test Circuit 6. Break-Before-Make Delay, tOPEN
VDD
VSS
VDD A3 A2 A1 A0 2.4V RS EN VIN 50 GND
VSS S1 VS ENABLE DRIVE-V IN 0V 3V 50% 50%
S2 THRU S16
ADG426*
tOFF (EN)
VO D WR RL 300 VOUT CL 35pF OUTPUT 0V 90% 90%
tON (EN)
*SIMILAR CONNECTION FOR ADG406/ADG407
Test Circuit 7. Enable Delay, tON (EN), tOFF (EN)
-10-
REV. 0
ADG406/ADG407/ADG426
VDD VSS
VDD A3
VSS S1 VS 3V WR 0V D RL 300 GND CL 35pF VOUT V0 OUTPUT 0V 50%
A2 S2 THRU S16 A1 A0 2.4V EN RS VRS WR VWR
ADG426
tON (WR)
0.2V0
Test Circuit 8. Write Turn-On Time, tON (WR)
VDD
VSS
VDD A3 A2 A1 A0 2.4V EN RS VIN GND
VSS S1 VS
3V RS 0V 50%
S2 THRU S16
ADG426
V0 D WR RL 300 VOUT CL 35pF
tOFF (RS)
0.8V 0 OUTPUT 0V
Test Circuit 9. Reset Turn-Off Time, tOFF (RS)
VDD
VSS
VDD A3 A2 A1
VSS RS 2.4V 3V
ADG426*
A0 S VS RS EN VIN D CL 1nF GND WR VOUT
LOGIC INPUT (VIN ) VOUT QINJ = C L x VOUT
VOUT
*SIMILAR CONNECTION FOR ADG406/ADG407
Test Circuit 10. Charge Injection
REV. 0
-11-
ADG406/ADG407/ADG426
VDD VDD S16 A3 A2 A1 A0 2.4V RS EN GND WR D VSS RL 1k VOUT 2.4V VDD S1 S16 VIN S2 VIN 1k A0 A2 A3 EN RS GND WR VSS S1 VDD D 1k VOUT
ADG426*
C1905-18-4/94
0.025 (0.63) 0.015 (0.38) 0.021 (0.53) 0.013 (0.33) 0.430 (10.92) 0.390 (9.91) 0.032 (0.81) 0.026 (0.66) 0.040 (1.01) 0.025 (0.64) 0.110 (2.79) 0.085 (2.16)
ADG426*
A1
VSS *SIMILAR CONNECTION FOR ADG406/407 VSS *SIMILAR CONNECTION FOR ADG406/407
Test Circuit 11. OFF Isolation
Test Circuit 12. Crosstalk
OUTLINE DIMENSIONS
Dimensions shown in inches an (mm).
28-Pin Plastic (N-28)
28-Pin PLCC (P-28A)
0.180 (4.57) 0.165 (4.19)
0.048 (1.21) 0.042 (1.07)
28 15 0.580 (14.73) 0.485 (12.32) 1 1.565 (39.70) 1.380 (35.10) 0.250 (6.35) MAX 0.200 (5.05) 0.125 (3.18) 0.022 (0.558) 0.014 (0.356) 0.100 (2.54) BSC 0.070 (1.77) MAX 14 0.625 (15.87) 0.600 (15.24) 0.195 (4.95) 0.125 (3.18) 0.015 (0.381) 0.008 (0.204)
0.056 (1.42) 0.042 (1.07) 26
0.048 (1.21) 0.042 (1.07) 5
4 PIN 1 IDENTIFIER
25
PIN 1
0.050 (1.27) BSC
TOP VIEW
0.060 (1.52) 0.015 (0.38) 0.150 (3.81) MIN SEATING PLANE
11 0.020 (0.50) R 12 0.456 (11.58) SQ 0.450 (11.43) 0.495 (12.57) SQ 0.485 (12.32) 18
19
28-Pin SSOP (RS-28)
28
15 0.212 (5.38) 0.205 (5.207) 0.311 (7.9) 0.301 (7.64)
PIN 1 1 14
0.407 (10.34) 0.397 (10.08)
0.07 (1.78) 0.066 (1.67)
0.008 (0.203) 0.002 (0.050)
0.0256 (0.65) BSC
0.009 (0.229) 0.005 (0.127)
8 0
0.03 (0.762) 0.022 (0.558)
1. LEAD NO. 1 IDENTIFIED BY A DOT. 2. LEADS WILL BE EITHER TIN PLATED OR SOLDER DIPPED IN ACCORDANCE WITH MIL-M-38510 REQUIREMENTS
-12-
REV. 0
PRINTED IN U.S.A.


▲Up To Search▲   

 
Price & Availability of ADG406BP

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X